
On the PTAS for Maximin Shares in an Indivisible Mixed Manna

Rucha Kulkarni1, Ruta Mehta1, Setareh Taki1

1 University of Illinois at Urbana-Champaign
ruchark2@illinois.edu, rutameht@illinois.edu, staki2@illinois.edu

Abstract

We study fair allocation of indivisible items, both goods and
chores, under the popular fairness notion of maximin share
(MMS). The problem is well-studied when there are only
goods (or chores), where a PTAS to compute the MMS val-
ues of agents is well-known (Woeginger 1997; Jansen, Klein,
and Verschae 2016).
In contrast, for the mixed manna, a recent result of (Kulkarni,
Mehta, and Taki 2020) showed that finding even an approx-
imate MMS value of an agent up to any approximation fac-
tor in (0, 1] is NP-hard for general instances. In this paper,
we complement the hardness result by obtaining a PTAS to
compute the MMS value, when its absolute value is at least
1/ρ times either the total value of all the goods or total cost
of all the chores, for some constant ρ ≥ 1.

1 Introduction
Finding fair and efficient allocations is a fundamental prob-
lem in algorithmic game theory. The problem has been ex-
tensively studied for divisible resources, phrased as the cake
cutting problem; see (Robertson and Webb 1998) for a sum-
mary. Here, a division of a cake that gave one piece to each
of n agents was termed fair if it ensured properties like (a)
envy-freeness, meaning every agent values her own piece
more than those allocated to other agents, and (b) propor-
tionality, meaning every agent values her piece at least 1/n
fraction of her total value for the cake.

When there are two agents, the simple cut and choose
protocol is known to work since the biblical era, where one
agent cuts the cake into two pieces and the other agent gets to
choose first. Recent years have seen a surge of works on the
fair division of indivisible items, like school/course seats,
assets and liabilities, and computing resources on networks,
due to their wide applications (Steinhaus 1948; Brams and
Taylor 1996; Vossen 2002; Moulin 2004; Etkin, Parekh, and
Tse 2007; Budish 2011; Ghodsi et al. 2018). A simple exam-
ple of allocating a single indivisible item among two agents
shows that both envy-free and proportional allocations may
not exist. Therefore, Budish (2011) defined the notion of
maximin share (MMS) based on the following extension of

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the cut and choose protocol. If there are n agents, an agent
partitions the items into n bundles assuming she will get to
choose last. As she may end up with the least valued bun-
dle, naturally, she will partition the items in such a way that
the value of the least valued bundle is maximized. This is
called her MMS value. An allocation where every agent re-
ceives a bundle of at least her MMS value is called an MMS
allocation.

This problem is well studied for the good manna where all
items are valued non-negatively by every agent, and for the
bad (chore) manna where items are valued non-positively
by everyone (See Section 1.1 for related work). We consider
a mixed manna setting, where every item can be positively
valued by some agents, and negatively valued by some. A
natural starting question in the quest to find MMS alloca-
tions is,

Q: Given a mixed manna, what is the MMS value of every
agent?

This question is NP-hard, even for the good manna. Note
that finding the MMS value of an agent is equivalent to
finding an MMS allocation when all agents have valua-
tions identical to this agent. Hence, the problem of find-
ing MMS allocations is also NP-hard, even with identical
agents and a good manna. However, (Woeginger 1997) gave
a PTAS for this setting. This PTAS was later used in sev-
eral works to find approximate MMS allocations with non-
identical agents (Procaccia and Wang 2014; Kurokawa, Pro-
caccia, and Wang 2016; Amanatidis et al. 2017; Ghodsi et al.
2018; Garg and Taki 2020). The best known approximation
result for the MMS problem with nonidentical agents in a
chore manna (Huang and Lu 2019) also uses a PTAS for
finding MMS values (Jansen, Klein, and Verschae 2016) as
a subroutine. The next question then is,

Q: Is there a PTAS to find the MMS values of agents in a
mixed manna setting?

Surprisingly, (Kulkarni, Mehta, and Taki 2020) showed
that even in a highly restricted setting of two identical agents
where the mixed manna has only two chores, it is NP-hard
to find approximate MMS values within any constant fac-
tor. Their reduction indicates that perhaps the bottleneck is-
sue that makes the problem hard, is that the absolute MMS
value can be arbitrarily small. Intuitively speaking, as the

MMS value approaches arbitrarily close to zero, the prob-
lem of finding approximate MMS values approaches that of
finding exact MMS values. In the limit where MMS = 0,
every approximate MMS value is the exact MMS value. We
then ask,

Q: If we had a guarantee that the absolute MMS value
is greater than some threshold value, say ∆, then does the
problem become tractable?

In this paper, we resolve this question positively for a spe-
cific value of ∆. Note that since the MMS problem is scale-
free, setting ∆ to a fixed constant will not make the problem
any easier. Therefore, ∆ will have to be instance dependent.
To be specific, let v+ denote the sum of values of an agent
for all the items she values positively, and v− the sum of
absolute values of all her negatively valued items (chores).

Theorem 1.1 (Informal). In the case of identical agents,
there is an algorithm that: (a) when |MMS| ≥
min{v+, v−}/ρ for some constant ρ ≥ 1, finds an allo-
cation that gives every agent a bundle of value at least
(1− ε)-MMS for any constant ε > 0, and (b) when
|MMS| < min{v+, v−}/ρ, reports this by returning the
trivial allocation where all items are given to one agent. The
algorithm runs in timeO(mnL), wherem,n are the number
of items and agents, and L is the bit-length of the input.

We note that our assumption is weaker than having
min{v+, v−} being a constant. Also, the extensively stud-
ied good manna and chore manna are special cases of this
setting, hence any algorithmic results here translate to these
settings as well.

One of the key tools used by our algorithm is a care-
fully designed Integer Program (IP) that can be solved in
polynomial-time. IPs have been used to solve related prob-
lems in several works. (Woeginger 1997) gave a PTAS using
this idea for the machine covering problem, which is equiva-
lent to the MMS problem in a good manna. The MMS prob-
lem in a chore manna is equivalent to machine scheduling
which has a PTAS using IP for bin packing (the dual prob-
lem). Several algorithms for the bin packing problem solve
a relaxation of an IP as their main idea (De La Vega and
Lueker 1981; Johnson 1982; Karmarkar and Karp 1982).
Our approach builds on these, but requires several new ideas
to handle both goods and chores simultaneously. Next we
briefly describe some of these.

Non-constant variables. The variables of the IP will cor-
respond to subsets of items. We show that we only need to
consider subsets with total value at most a particular bound.
With a good (chore) manna, this restricts to subsets where
the number of items with value at least some fraction of the
bound is a constant. While for a mixed manna, subsets of
even O(m) size may have a small value due to positive and
negative values may cancel each other. Hence, the number
of variables of the IP is not a constant for a mixed manna.

We circumvent this issue by reducing the problem to a
problem with only goods, where a restricted set of alloca-
tions are allowed, called valid allocations.

Allow only valid allocations. The next task is to define

constraints in the IP that ensure a valid allocation. Towards
this, we define a cost function that characterizes valid allo-
cations with a single constraint.

Sign of MMS. Our approach works for both cases
MMS ≥ 0 (Section 3), and MMS < 0 (Appendix B). These
are inherently different problems. The MMS ≥ 0 problem
maximizes the smallest bundle’s value, while the negative
MMS case minimizes the absolute value of the largest bun-
dle. We show that our IP for the former case can be modified
to work for the later case of MMS < 0.

1.1 Related Work
The MMS problem has been extensively studied for the good
manna (Kurokawa, Procaccia, and Wang 2016; Ghodsi et al.
2018; Garg, McGlaughlin, and Taki 2018; Kurokawa, Pro-
caccia, and Wang 2018; Barman and Krishna Murthy 2017;
Farhadi et al. 2019; Amanatidis et al. 2017; Garg and Taki
2020) and chore manna (Barman and Krishna Murthy 2017;
Huang and Lu 2019) settings. With a good manna, there are
several algorithms to find allocations that give every agent
a bundle worth a constant fraction of their MMS value; the
best factor known so far is (3/4+1/(12n))-MMS, by (Garg
and Taki 2020). For the chore manna, (Huang and Lu 2019)
give a PTAS to find the MMS values of agents, and an
11/9 approximate MMS allocation. The study of the mixed
manna setting started recently. (Kulkarni, Mehta, and Taki
2020) gave a PTAS for the special case of the problem with
a constant number of agents, when the total value of goods
is some factor away from the total absolute value of chores.

2 Preliminaries and Notation
In this section, we formally define mixed instances and other
relevant notions of maximin share. We use [k] to denote
the set {1, 2 · · · , k}, and (Sj)j∈[k] to denote the (multi-)set
{S1,S2 . . . ,Sk}.
Definition 2.1. An MMS instance is a tuple 〈N ,M, v〉,
where N is a set of n agents, M is a set of m indivisible
items, and v : 2M → R is the identical additive valuation
function of all agents, represented by v(S) =

∑
j∈S vj for

S ⊆M.

A partition of all items among all agents is termed an al-
location, denoted by A = {A1, A2, · · · , An}. Thus, Ai ∩
Ai′ = ∅ for all distinct i, i′ in N , and ∪iAi =M.

Definition 2.2 (MMS value). Given an MMS instance, let
Πn(M) be the set of all possible allocations of M into n
sets. The maximin share (MMS) value of an agent, denoted
by MMSn(M), is defined as,

MMSn(M) = max
A∈Πn(M)

min
Ak∈A

v(Ak) .

We refer to MMSn(M) by MMS when the qualifiers n
andM are clear. Note that MMS can be negative too.

An allocation which gives every agent a set of items worth
at least MMS is called an MMS allocation. Note that all
agents have the same valuation function v for M, hence

the MMS values are same for all agents. Also, the alloca-
tion determining the MMS value for any agent is an MMS
allocation. Hence when the agents are identical MMS allo-
cations always exist. However, finding an MMS allocation is
known to be NP-Hard (Bouveret and Lemaı̂tre 2016). Thus,
we search for a PTAS to find almost optimal allocations,
termed (1− ε)-MMS allocations, defined as follows.
Definition 2.3 ((1− ε)-MMS allocation). A is called a
(1− ε)-MMS allocation, if for a given ε > 0, for each agent
i ∈ N we have v(Ai) ≥ (1 − ε)MMS if MMS ≥ 0, and
v(Ai) ≥ (1/(1− ε))MMS, if MMS < 0. Equivalently,

v(Ai) ≥ min{(1− ε)MMS, (1/(1− ε))MMS}.
Definition 2.4 (MMS problem). Given an MMS instance
〈N ,M, v〉, the MMS problem is to find a (1− ε)-MMS al-
location ofM among N .

Items of a mixed manna can be divided into two sets.
Goods are the items valued positively according to v. The set
of goods is denoted byM+ = {j ∈ M | vj ≥ 0}. Chores
are items valued negatively, and the set of chores is termed
M− = {j ∈ M | vj ≤ 0}. We denote by v+ the sum of
values of all goods in the manna. That is, v+ =

∑
j∈M+ vj .

Similarly, we denote by v− the sum of absolute values of all
chores, i.e., v− =

∑
j∈M− |vj |.

To circumvent the hardness result of (Kulkarni, Mehta,
and Taki 2020) for the MMS problem for any ε ∈ [0, 1), we
make the assumption that |MMS| ≥ min{v+, v−}/ρ, for
some constant ρ ≥ 1. As we cannot decide before comput-
ing the MMS value if a given instance satisfies this property,
we pose the following problem, termed the Bounded MMS
problem, denoted by B-MMS.
Definition 2.5 (B-MMS problem). Given an MMS instance
〈N ,M, v〉 and an ε > 0, return a (1− ε)-MMS allocation
if MMS ≥ min{v+, v−}/ρ for some constant ρ ≥ 1, else
report MMS < min{v+, v−}/ρ by returning the trivial al-
location where one agent gets all itemsM.

In this paper, we give a polynomial time algorithm that
solves the B-MMS problem. In other words, we provide
a PTAS to find the MMS values of agents in a mixed
manna, when the absolute MMS values are higher than
min{v+, v−}/ρ, for some constant ρ ≥ 1.

The following lemma by (Kulkarni, Mehta, and Taki
2020) shows an easy way to decide the sign of MMS, al-
lowing us to design separate approaches for the negative and
non-negative MMS cases.
Lemma 2.1. v(M) ≥ 0 iff MMS ≥ 0.

For solving the B-MMS problem, we first find the sign
of MMS using Lemma 2.1, then apply the appropriate algo-
rithm for that case.

3 Algorithm for B-MMS when MMS ≥ 0

In this section, we describe a PTAS for the B-MMS problem
for the MMS ≥ 0 case. All missing proofs of this section are
are provided in Appendix A. The main parts of the PTAS are
explained and solved in separate subsections.

3.1 Reducing B-MMS to GC-MMS

We first reduce the given B-MMS problem to a new prob-
lem with only goods called the Goods manna Constrained
MMS problem, denoted by GC-MMS. At a high level, this
is similar to the MMS problem, but it computes optimal al-
locations over a restricted set of partitions, called valid allo-
cations (described shortly).

The intuition behind defining GC-MMS problem is as fol-
lows: Suppose we replace every chore by n− 1 goods, each
of value equal to the absolute value of the chore. Lets call
these good-copies of the chores. Every time we want to as-
sign a chore j ∈ M to some agent, we instead assign one
of the n− 1 good-copies of j to the remaining n− 1 agents
(one copy for each n−1 agents). This adds exactly |vj | value
to every bundle and therefore keeps their relative order the
same. Once we do this for every chore, the value added to
each bundle is exactly v−, and is the same for every parti-
tion in Πn(M). Therefore, if we restrict the allocations in
the new setting to allow an agent to get at most one good-
copy of any chore, then MMS allocations in the two settings
are equivalent.

Following this intuition, we define a GC-MMS instance
and valid allocations as follows.

Definition 3.1 (GC-MMS instance). A tuple
〈N ,G, (Sj)j∈[m−], u〉, where N is a set of agents, G
is a set of goods, (Sj)j∈[m−] are m− sets of goods,
each containing (n − 1) identical copies of a good, and
u : M ∪ (Sj)j∈[m−] → R+ is the identical valuation
function of the agents in N for all items G ∪ (Sj)j∈[m−].

Definition 3.2 (Valid allocation). Given a GC-MMS in-
stance 〈N ,G, (Sj)j∈[m−], u〉, an allocation A is valid if
no agent receives more than 1 item from any set Sj ∈
(Sj)j∈[m−], i.e., for all i ∈ N , j ∈ [m−], |Ai ∩ Sj | ≤ 1.

The GC-MMS problem asks to find a valid allocation that
maximizes the value of the smallest bundle, i.e., an MMS
allocation over the valid allocations. We abuse notation to
denote both the problem and the value by GC-MMS, and
formally define them as follows.

Definition 3.3 (GC-MMS value). Given a GC-MMS in-
stance 〈N ,G, (Sj)j∈[m−], u〉, let F be the set of all valid
allocations. The GC-MMS value of the instance, denoted by
GC-MMS, is defined as follows.

GC-MMS = argmax
A∈F

min
A∈A

v(A)

Since it is NP-hard to compute GC-MMS (even when
(Sj)j∈[m−] = ∅), define the following approximate version
of the problem.

Definition 3.4 (GC-MMS problem). Given a GC-MMS in-
stance 〈N ,G, (Sj)j∈[m−], u〉 and ε > 0, return a valid allo-
cation A such that minA∈A v(A) ≥ (1− ε′)GC-MMS.

Next we show that the B-MMS problem can be reduced
to GC-MMS problem such that a PTAS for the latter gives a
PTAS for the former.

Given an instance 〈N ,M, v〉we define the corresponding
GC-MMS instance 〈N ,G, (Sj)j∈[m−], u〉 as follows: The set
of agents is unchanged, G =M+, m− = |M−|, and for all
j ∈M−, define Sj to be a set of (n− 1) goods represented
as Sj := {(j, k)|k ∈ [n − 1]} – Sj consists of good-copies
of chore j. Finally, define u(j) = v(j) for all j ∈ G and
u((j, k)) = −v(j) for all j ∈M− and k ∈ [n− 1].

Lemma 3.1. Allocations of B-MMS are in one-to-one cor-
respondence with valid allocations of GC-MMS, such that
if allocation Bπ of the former maps to allocation Cπ of the
later then u(Ci) = v(Bi) + v−, ∀i ∈ N .

Proof. Given a B-MMS allocation Bπ , add good-copies of
each chore to agents who did not receive the chore in Bπ ,
and discard all chores. This gives a GC-MMS allocation Cπ .
The reverse allocation is obtained by similarly discarding all
good-copies and assigning the corresponding chore to the
agent who did not receive any good-copy.

Every agent i ∈ N receives in Ci all the goods assigned
to her in Bi. Every chore that was assigned to her in Bi is
discarded in Ci. Due to this, her value increases by the abso-
lute value of chores allotted to her in Bi. Further, for every
chore not assigned to her, she receives a good-copy of it in
Ci. As for all j ∈ C, u(j) = |v(j∗)| for the corresponding
j∗ in M, each good-copy increases her value by the abso-
lute value of the corresponding chore. Her total valuation
increases by the absolute value of all chores not assigned to
her as well. Hence, the difference u(Ci)− v(Bi) is exactly,∑
j∈Bi

v(j) +
∑
j /∈Bi

v(j) = v−.

Corollary 3.1. GC-MMS, relates to the MMS value of the
B-MMS problem as,

GC-MMS = MMS + v−. (1)

Equation (1) allows to relate the approximation parame-
ters of B-MMS and GC-MMS allocations as follows.

Theorem 3.1. If MMS ≥ v−/ρ, then a (1 −
ε

(1+ρ))GC-MMS allocation gives a (1− ε)-MMS alloca-
tion, and therefore a PTAS for GC-MMS gives a PTAS for
the B-MMS problem.

Proof. Let ε′ = ε
(1+ρ) . Take the (1−ε′)GC-MMS allocation,

say Cπ, and consider the corresponding allocation Bπ of
the B-MMS instance as described in the proof of Lemma
3.1. From Lemma 3.1, the smallest bundle in Bπ has value
(1− ε′)GC-MMS− v−.

If MMS ≥ v−/ρ, we have, (1 − ε′)GC-MMS − v− ≥
(1 − ε′)(MMS + v−) − v− ≥ (1 − ε′)(MMS + ρMMS) −
ρMMS = (1− (1 + ρ)ε′)MMS = (1− ε)MMS. Therefore,
Bπ is a (1− ε)-MMS allocation

Since ρ and ε are constants in the B-MMS problem, ε′ is
also a constant. Therefore, a PTAS for GC-MMS is indeed a
PTAS for the B-MMS problem as well.

Due to the above theorem, it suffices to obtain a PTAS for
the GC-MMS problem.

3.2 Algorithm for GC-MMS

Algorithm 1 for GC-MMS will perform a search for the
highest value µ for which we get an allocation that gives
every agent at least a µ-valued bundle. For this we per-
form a search on a multiplicative grid over all possible
values of GC-MMS, obtained as follows. First, we have
v−/ρ ≤ MMS ≤ v(M)/n = (v+ − v−)/n. Combined
with Equation (1), we get v− + v−/ρ ≤ GC-MMS ≤
(v+ − v−)/n+ v−.

In each iteration of the search, it first checks if there is
an item with value more than µ. First, there will be no such
chore. Because if there was one, say c, we have c > µ ≥
GC-MMS = MMS+v− which implies MMS < c−v− ≤ 0.

If there is a good j with v(j) ≥ µ, we have µ − v− ≥
GC-MMS − v− = MMS(B-MMS instance). Using this we
find Bπ, a solution of the B-MMS instance as follows: as-
sign good j and all the chores to an agent, and remove the
agent and her bundle. The following allocation for the re-
sulting instance is feasible, and has equal or higher MMS
value. From any MMS allocation of the B-MMS instance,
(a) remove all chores and add them to the part containing the
good j, and (b) remove all goods except j from this part and
arbitrarily distribute among the remaining parts. The MMS
value of the resulting instance is not lower, and therefore it
suffices to find it’s (1− ε)-MMS allocation using the PTAS
of (Woeginger 1997). Algorithm 1 returns allocationCπ cor-
responding to this B-MMS allocation.

If every item has value at most µ, the algorithm applies a
subroutine Exists-GC-MMS, for which we prove in Section
3.3,
Theorem 3.2. Exists-GC-MMS(〈N ,G, (Sj)j∈[m−], u〉, ε, µ)
returns a tuple (A, f lag) with flag = true and
u(A) ≥ (1 − ε)µ, ∀A ∈ A, whenever µ ≤ GC-MMS. And
it runs in O(mn) time.

If Exists-GC-MMS returns a false flag, the Algorithm re-
sets µ ← (1 − ε)µ and starts the next iteration, else returns
the allocation obtained and stops. Theorem 3.2 implies the
following.When Algorithm 1 stops, say for a value µ∗, we
know GC-MMS ≤ µ∗/(1−ε̄), from the false flag returned in
the previous iteration. From this iteration’s output, we have
a (1− ε̄)2GC-MMS allocation. Fixing ε̄ as ε′/2 gives,
Lemma 3.2. If GC-MMS ≥ (1 + 1/ρ)v−, Algorithm 1 re-
turns a (1− ε′)GC-MMS allocation.

Now we are ready to show Theorem 1.1 for the case when
MMS ≥ 0.

Theorem 3.3. There is an algorithm to solve the B-MMS
problem for the case MMS ≥ 0, that runs in time O(mnL),
where L is the number of bits needed to represent function
v.

Proof. From Theorem 3.1, it suffices to get a PTAS for
the corresponding GC-MMS problem. By Lemma 3.2 Al-
gorithm 1 does solve a GC-MMS problem. The while loop
of the algorithm runs for 1

ε̄ log (v
++(n−1)v−

n − (1+ρ)v−

ρ) ≤
2(1+ρ)

ε L many times. By Theorem 3.2 and (Woeginger

Algorithm 1: Algorithm for GC-MMS

Input : 〈N ,G, (Sj)j∈[m−], u〉, ε′ > 0
Output: (1− ε′)GC-MMS allocation if

GC-MMS ≥ (1 + 1/ρ)v−

1 ε̄← ε′/2; µ← v+/n+ (1− 1/n)v−

2 while µ ≥ (1 + 1/ρ)v− do
3 if ∃j ∈ G : u(j) ≥ µ then
4 A = (A1, . . . , An), An ← {j}
5 (A1, . . . , An−1)← (1− ε̄)-MMS partition of

〈N \ {n},G, u〉 // use PTAS of
(Woeginger 1997)

6 Ai ← Ai ∪ {(j, i)} for all i ∈ [n− 1] and
j ∈ [m−]

7 return A
8 (A, f lag)←

Exists-GC-MMS(〈N ,G, (Sj)j∈[m−], u〉, ε̄, µ)
9 If flag then return A

10 else µ← (1− ε̄)µ
11 A = (A1, . . . , An) where Ai = {(j, i) : ∀j ∈ [m−]}

for i ∈ [n− 1], An = G // agents 1 to n− 1
each get one good-copy of all
chores.

12 return A

1997), every iteration of the while loop takes at mostO(mn)
time, and therefore the overall running time isO(mnL).

Remark 3.1. The proof of Theorem 1.1 for the case when
MMS < 0 is similar, and in some sense simpler, and dis-
cussed in Appendix B.

The next section shows Theorem 3.2.

3.3 Algorithm for Exists-GC-MMS

At a high level, we first map the set of items in the
Exists-GC-MMS instance to multi-sets of numbers corre-
sponding to their values (scaled to have µ = 9d 1

ε e
2 for tech-

nical reasons). Valid partitions of these numbers are defined
analogously like valid allocations of the GC-MMS items. We
then classify the values as BIG or SMALL. The key compo-
nent of the algorithm is an IP to find a valid partition of
the BIG values such that (a) every part has value at least
9(d 1

ε e
2 − d 1

ε e), and (b) there are enough SMALL values to
greedily allocate over this partition and have every part val-
ued at least 9d 1

ε e
2. We now discuss the details of the algo-

rithm formally.
Exists-GC-MMS has two steps 1) Pre-processing and 2)

Main Algorithm.
Pre-processing.(Algorithm 2, line 1) Let E := d 1

ε̄ e. Note
thatE is a constant integer that only depends on ε̄ and not on
parameters in the GC-MMS instance. Scale the valuations v
by 9E2/µ. Let Vg = (gj)(j∈[m+]) and Vc = ∪j∈[m−]Cj ,

where Cj = (ckj)k∈[n−1] be multi-sets of numbers cor-
responding to scaled valuations, respectively of M+ and

(Sj)j∈[m−]. Let T = Vg ∪ Vc.
This completes the pre-processing step. The following

lemmas characterize partitions of T that correspond to ap-
proximately optimal GC-MMS allocations.

Definition 3.5 (Valid Partition of T). We call a partition
P = (P1, . . . , Pn) of values in T valid if each Pk contains
at most one element from each Cj , i.e., |Pk ∩Cj | ≤ 1 for all
k ∈ [n] and j ∈ [m−].

It is easy to see that each valid partition of T is equivalent
to a valid allocation in its corresponding GC-MMS instance.
With the scaling step, this directly implies,

Lemma 3.3. Given a GC-MMS instance
〈N ,G, (Sj)j∈[m−], u〉, if µ ≤ GC-MMS then there is
a valid partition of T where the sum of values in each part
is at least 9E2.

As E = d1/ε̄e, we can show that a part of value at least
9E2 − 9E will correspond to a bundle of value at least (1−
ε̄)µ. We use this and Lemma 3.3 to show the next lemma.

Lemma 3.4. A valid partition of T where the sum of values
in each part is at least 9(E2 − E) is equivalent to a valid
allocation for its corresponding GC-MMS instance where
each bundle has value at least (1− ε̄)µ.

Main Algorithm. Call a valid partition of T optimal if the
sum of values in each part is at least 9(E2 − E). This step
returns an optimal partition if µ ≤ GC-MMS, else correctly
reports µ > GC-MMS by returning flag = false. Note
that Algorithm 1 runs Exists-GC-MMS only if every item
has value at most µ. Hence, after scaling by 9E2, we can
assume t ≤ 9E2, ∀t ∈ T . The key of the algorithm is an IP.
We first explain the IP.

Notation. We define SMALL and BIG values in T . Call
a value t ∈ T SMALL if t < 3E and BIG if t ≥ 3E. For
each T ⊆ T let SMALL(T) be the set of all small values
in T and BIG(T) be the set of all big values in T . We call
a set Cj ∈ Vc small if it contains SMALL values and big
otherwise1. Let σ, σ+, (n− 1) · σ− respectively be the sum
of all values in SMALL(T), SMALL(Vg) and SMALL(Vc),
, i.e., σ :=

∑
t∈SMALL(T) t, σ

+ :=
∑
t∈SMALL(Vg) t and

σ− := (
∑
t∈SMALL(Vc) t)/(n − 1). Note that σ− is equal to

the sum of values obtained by picking one value from each
small Cj , and σ = σ+ + (n− 1)σ−.

Next, we know that every BIG value will be in the range
[3E, 9E2]. For all integers r in [3E, 9E2], let n+

r , n
− re-

spectively be the number of values in BIG(Vg) and the
number of sets Cj with integral part of values r. Thus,
(n− 1)n−r + n+

r items j in Vg ∪ Vc have bjc = r.
We now define notation to represent a subset of BIG val-

ues and their sum. Let X denote a part in a partition of
T . We define the type of X by τ(X) = 〈τ(X), τ(X)〉 =
(τ3E , . . . , τ9E2 , τ3E , . . . , τ9E2); here τ r, τ r are resp. the
number of values in BIG(X ∩ Vg) and BIG(X ∩ Vc) with

1Note that each Cj , j ∈ [m−] contains n− 1 equal values. i.e,
for each Cj , either SMALL(Cj) = ∅ or SMALL(Cj) = Cj .

integer part r. Let SIZE(τ(X)) :=
∑
r r(τ r + τ r) be the

total sum of these rounded values in BIG(T ∩X).
Using this notation, we design an IP to find an assignment

of BIG values in an optimal partition. First, observe that ev-
ery BIG value is at most 9E2. Thus, if an optimal partition
has some part valued more than 18E2,we can remove values
until the size of this set is in the range [9E2, 18E2]. Find-
ing a partial allocation of BIG values that assigns at least
9E2 value to all parts suffices to solve Exists-GC-MMS, as
we can arbitrarily add the unallocated values. Thus, we will
only consider types whose size SIZE(.) is at most 18E2.

The variables of the IP correspond to all types τ that sat-
isfy (i) SIZE(τ) ≤ 18E2, (ii) τ r ≤ n+

r , (iii) τ r ≤ n−r . Let
τ (1), τ (2), . . . , τ (Γ) be an enumeration of all variables. In-
tuitively, we consider types that represent valid allocations
of items corresponding to the BIG values in a GC-MMS in-
stance. Every IP variable takes an integer value equal to the
number of times the corresponding type is selected. This in
turn represents the number of parts in the output allocation
that have a subset of BIG items as represented by this type.

Lemma 3.5. The number of IP variables Γ is O(1).

Proof. Every type with size at most 18E2 can have at most
6E BIG values, as every BIG value is at least 3E. Each value
is one of [3E, 9E2], a constant sized set. Hence, the number
of types τ̄ and τ are each at most (9E2−3E+1)6E . The total
number of types at most twice this value, hence a constant
as E is a constant. The number of variables of the IP is at
most the number of types with size at most 18E2, hence is
constant.

Before defining the IP, we define two cost functions for
every type. These are used to define constraints to allocate
SMALL items.

First, define c(τ(X)) := max{0, 9E2 − 6E −
SIZE(τ(X))}. The intuition for this function is as follows.
Our aim is to create an optimal partition. If the sum of BIG
values SIZE(τ(X)) < 9(E2−E), we must add values from
SMALL(T) toX. The required sum from SMALL, is at least
9E2 − 9E − SIZE(τ(X)). However, SMALL(T) does not
have arbitrarily precise values. As every SMALL value is
at most 3E, we may have to add SMALL items until the
net value of the part becomes 3E more than required, i.e.,
9E2 − 6E. Hence the cost function c(τ(X)) is defined as
specified.

The second cost function captures the value that must
be added to a part from SMALL(Vg). If a part has
c(τ) > 0, we can add at most value σ− to the part from
SMALL(Vc). Hence, the minimum value from SMALL(Vg)
is σ+(τ(X)) := max{0, c(τ(X))− σ−}.

Using these notions, we define the following IP for finding

an allocation of BIG values.
Γ∑
j=1

xj = n; xj ∈ {0} ∪ N,∀j ∈ [Γ] (2)

Γ∑
j=1

τ (j)
r xj ≤ n+

r ∀r ∈ [3E, 9E2] (3)

Γ∑
j=1

τ (j)
r xj ≤ (n− 1)n−r ,∀r ∈ [3E, 9E2] (4)

(a)

Γ∑
j=1

c(τ (j))xj ≤ σ; (b)

Γ∑
j=1

σ+(τ (j))xj ≤ σ+ (5)

Algorithm 2: Exists-GC-MMS

Input : 〈N ,G, (Sj)j∈[m−], u〉, ε̄, µ
Output: (A,True) if there exists a (1− ε̄)-GC-MMS

allocation A and (∅,False) otherwise

1 Vg ← {g1, . . . gm+}, gj = u(j).
(

9E2

µ

)
, j ∈ G

Vc ←
⋃
j∈[m−] Cj , Cj := {c1j , . . . , c

n−1
j },

ckj = u(j, k),∀(j, k) ∈ Sj ,∀Sj ∈ (Sj)j∈[m−];
T ← Vg ∪ Vc

2 if IP has a solution X for T then
3 j ← 1
4 for all i : xi 6= 0 : do
5 Create xi parts Pj to Pj+xi

6 Add BIG values to each Pk, k ∈ [j, j + xi] as
per τ (i) ; j ← j + xi + 1

7 while ∃k :
∑
j∈Pk

j < (9E2 − 9E) do
8 while

∑
j∈Pk

j < (9E2 − 9E) do
9 If Pk ∩ Cj = ∅ for any j ∈ [m−] then

add one value from Cj to Pk
10 else add any value from SMALL(Vg) to

Pk

11 while there is an unallocated value k from Cj for
any j ∈ [m−] do

12 Add k to any Pi : Pi ∩ Cj = ∅
13 Add remaining unallocated values arbitrarily
14 A ← allocation corresponding to

P = (P1, · · · , Pn) // use Lemma 3.3
15 return (A,True)

16 return (∅,False)

The Exists-GC-MMS algorithm is as follows. After apply-
ing the pre-processing step, it defines and solves the above
IP. If the IP has a solution, then first it considers the items
from the GC-MMS instance that correspond to the BIG val-
ues in T . The algorithm partitions all these items in n bun-
dles by creating n subsets, with xi subsets corresponding to
type τ (i). After this, it considers the subsets of BIG items
that do not have total sum of values at least 9E2 − 9E. To
each of these, it first adds the SMALL items corresponding to

the small Cj subsets, by adding at most one item from each
subset Cj , in any order. If upon adding these, the value of
the set is still not 9E2 − 9E, it adds items corresponding to
the SMALL(Vg) set, until the total sum of values is at least
9E2−9E. The algorithm returns the tuple (A, true), where
A is the allocation formed by this process. If the IP does not
have a solution, it returns the tuple (∅, f lag = false).

Algorithm 2 formally describes Exists-GC-MMS. We
now analyze the correctness of Exists-GC-MMS.

Lemma 3.6. If µ ≤ GC-MMS, then IP has a solution.

Proof. As µ ≤ GC-MMS, from Lemma 3.3, there is a valid
partition of T with sum of values of each part at least 9E2.
Let this partition be T IP. Let τ i = τ(T IP

i) be the type of each
part, and τ IP = [τ1 · · · , τn], be the multi-set of types of all
parts.

Constraints (2), (3) and (4) hold for τ IP by definition of
a valid partition. For any τ i ∈ τ IP with c(τ i) = 0, we
have

∑
t∈SMALL(T IP

i) t ≥ c(τ i) = 0, and for any τ i ∈
τ IP with c(τ i) > 0, we have

∑
t∈SMALL(T IP

i) t ≥ 9E2 −∑
t∈BIG(T IP

i) t ≥ 9E2−6E−SIZE(τ i) ≥ c(τ i). The second
inequality holds because the SIZE function rounds down all
values, and there are at most 6E BIG values in each T IP

i . By
adding the above inequality for all τ i ∈ τ IP, we obtain (5)
of the IP.

Since each T IP
i is a subset of a valid part, its correspond-

ing type τ i has at most one value from each Cj . There-
fore, for any τ i ∈ τ IP with σ+(τ i) > 0 we have, for∑
t∈SMALL(τ i∩Vg) t ≥ c(τ i)−

∑
t∈SMALL(τ i∩Vc) t ≥ c(τ i)−

σ− ≥ σ+(τ i). Moreover, for any τ i ∈ τ IP with σ+(τ i) = 0
we have, for

∑
t∈SMALL(τ i∩Vg) t ≥ σ+(τ i) = 0. By adding

the above inequality for all T IP
i ∈ T IP we get constraint (5).

Thus, T IP is a solution of the IP.

Lemma 3.7. If the IP has a solution, then the allocation re-
turned by Exists-GC-MMS is an allocation that gives every
agent a bundle of value at least (1− ε̄)µ.

Proof. Let τsol be the solution of the IP and P sol be the
partition of the values formed by Exists-GC-MMS after find-
ing τsol. We show that each part of P sol has value at least
(9E2−9E). From Lemma 3.4, we get that inA, every agent
gets a bundle of value at least (1− ε̄)µ.

After assigning BIG values to Pi as per the type τ i, sup-
pose there are parts with value less than 9E2 − 9E.

Consider any such part P. The algorithm first adds
SMALL values from Vg . As τsol satisfies constraint (5) (a)
of the IP, then c(τ(P)) ≤ σ+. That is, the value to add to
P so that the sum of values in P is at least 9E2 − 9E is
at most the sum of all SMALL values. We first add values
from SMALL(Vc). Suppose after receiving one value from
each set in Vc, P still has value less than (9E2 − 9E). As
τsol satisfies constraint (b) of (5) of the IP, the total cost
from SMALL(Vc) for all parts together is at most σ+. As
the cost function is monotonic with number of parts, the to-
tal cost from SMALL(Vc) for P also is at most SMALL(Vc).

Hence, there are enough values in SMALL(Vg) to add to Pi
to increase its value to at least (9E2 − 9E).

After adding values to P, its total value is at most
9E2 − 6E, as every item has value at most 3E.
Thus, the value added to it from SMALL values is at
most c(τ(P)). The total cost of the remaining parts is∑
P ′ 6=P c(τ(P)) =

∑
P∈P sol c(τ(P)) − c(τ(P)) ≤ σ+ −

(the sum of SMALL values assigned to P), which is exactly
the total value of unassigned SMALL values. Hence, con-
straint 5 (a) is satisfied for the smaller set τsol\τ(P). Simi-
larly, we can show constraint 5 (b) also is satisfied. The ini-
tial constraints 2, 4 and 3 are satisfied for τsol\τ(P) by the
validity of τsol. Hence τsol\τ(P) is a solution to the IP for
the smaller case after removing P and its assigned values.
By induction, we can assign values to every part until all
parts are satisfied. Adding any unallocated values arbitrarily
in Line 13 only increases the value of each bundle.

Hence, the partition P sol obtained has every bundle of
value at least 9E2 − 9E. From Lemma 3.4, the correspond-
ing allocation A gives every agent a bundle of value at least
(1− ε̄)µ.

Lemma 3.8. Exists-GC-MMS runs in time O(mn).

Proof. The time to run Exists-GC-MMS is asymptotically
equal to the time for constructing and solving the IP.
Lenstra’s algorithm (Lenstra Jr 1983) takes time exponen-
tial in the number of variables, O(21/ε̄2) = O(24/ε′2) here,
and polynomial in the largest coefficient of any variable in
all inequalities, m+ + (n − 1)m− = O(mn) here. Note
that σ and σ+ are at most n · 9E2. Hence, the IP requires
O(21/ε2mn) = O(mn) time.

Lemmas 3.6, 3.7 and 3.8 together prove Theorem 3.2.

Acknowledgements
Rucha Kulkarni and Ruta Mehta thank the support of NSF
Grant CCF-1750436 (CAREER). Setareh Taki is partially
supported by NSF Grant CCF-1942321 (CAREER).

References
Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi, A.
2017. Approximation Algorithms for Computing Maximin
Share Allocations. ACM Trans. Algorithms 13(4): 52:1–
52:28.
Barman, S.; and Krishna Murthy, S. K. 2017. Approxima-
tion algorithms for maximin fair division. In Proceedings of
the 2017 ACM Conference on Economics and Computation,
647–664. ACM.
Bouveret, S.; and Lemaı̂tre, M. 2016. Characterizing con-
flicts in fair division of indivisible goods using a scale of
criteria. Autonomous Agents and Multi-Agent Systems 30(2):
259–290.
Brams, S. J.; and Taylor, A. D. 1996. Fair Division: From
cake-cutting to dispute resolution. Cambridge University
Press.

Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6): 1061–1103.

De La Vega, W. F.; and Lueker, G. S. 1981. Bin packing can
be solved within 1+ ε in linear time. Combinatorica 1(4):
349–355.

Etkin, R.; Parekh, A.; and Tse, D. 2007. Spectrum sharing
for unlicensed bands. IEEE Journal on selected areas in
communications 25(3): 517–528.

Farhadi, A.; Ghodsi, M.; Hajiaghayi, M. T.; Lahaie, S.; Pen-
nock, D. M.; Seddighin, M.; Seddighin, S.; and Yami, H.
2019. Fair Allocation of Indivisible Goods to Asymmetric
Agents. J. Artif. Intell. Res. 64: 1–20.

Garg, J.; McGlaughlin, P.; and Taki, S. 2018. Approximating
Maximin Share Allocations. In 2nd Symposium on Simplic-
ity in Algorithms (SOSA 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Garg, J.; and Taki, S. 2020. An Improved Approximation
Algorithm for Maximin Shares. In Proceedings of the 21st
ACM Conference on Economics and Computation, 379–380.

Ghodsi, M.; Hajiaghayi, M.; Seddighin, M.; Seddighin, S.;
and Yami, H. 2018. Fair Allocation of Indivisible Goods:
Improvements and Generalizations. In Proceedings of the
2018 ACM Conference on Economics and Computation.

Huang, X.; and Lu, P. 2019. An algorithmic framework for
approximating maximin share allocation of chores. CoRR
abs/1907.04505.

Jansen, K.; Klein, K.; and Verschae, J. 2016. Closing
the Gap for Makespan Scheduling via Sparsification Tech-
niques. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP, volume 55, 72:1–72:13.

Johnson, D. S. 1982. The NP-completeness column: An on-
going guide. Journal of Algorithms 3(4): 381–395.

Karmarkar, N.; and Karp, R. M. 1982. An efficient approx-
imation scheme for the one-dimensional bin-packing prob-
lem. In 23rd Annual Symposium on Foundations of Com-
puter Science (sfcs 1982), 312–320. IEEE.

Kulkarni, R.; Mehta, R.; and Taki, S. 2020. Approximating
Maximin Shares with Mixed Manna. CoRR abs/2007.09133.
URL https://arxiv.org/abs/2007.09133.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2016. When
Can the Maximin Share Guarantee Be Guaranteed? In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, 523–529. AAAI Press.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018. Fair
Enough: Guaranteeing Approximate Maximin Shares. J.
ACM 65(2): 8:1–8:27.

Lenstra Jr, H. W. 1983. Integer programming with a fixed
number of variables. Mathematics of operations research
8(4): 538–548.

Moulin, H. 2004. Fair division and collective welfare. MIT
press.

Procaccia, A. D.; and Wang, J. 2014. Fair enough: Guaran-
teeing approximate maximin shares. In Proceedings of the
fifteenth ACM conference on Economics and computation,
675–692. ACM.

Robertson, J.; and Webb, W. 1998. Cake-cutting algorithms:
Be fair if you can. CRC Press.

Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16: 101–104.

Vossen, T. 2002. Fair allocation concepts in air traffic man-
agement. Ph.D. thesis, Supervisor: MO Ball, University of
Martyland, College Park, Md.

Woeginger, G. J. 1997. A polynomial-time approximation
scheme for maximizing the minimum machine completion
time. Operations Research Letters 20(4): 149–154.

A Missing Proofs
Lemma 3.2. If GC-MMS ≥ (1 + 1/ρ)v−, Algorithm 1 re-
turns a (1− ε′)GC-MMS allocation.

Proof. First, suppose there is a good j ∈ G : u(j) ≥ µ,
the B-MMS allocation corresponding to the GC-MMS allo-
cation returned gives the single good with all chores to one
agent, say i. The value of i’s B-MMS bundle is µ − v−.
Note that in every iteration of the algorithm, µ ≥ GC-MMS,
as the algorithm stops when it finds the first µ which gives
every agent a bundle of value at least µ. Hence, from Equa-
tion (1), the value of i’s B-MMS bundle is µ − v− ≥
GC-MMS− v− ≥ MMS.

By allocating all chores to i, and a single good, the MMS
values of the remaining agents over the remaining goods
only increases. Hence, a (1 − ε′)-MMS allocation of these,
combined with i’s bundle, is a (1− ε′)GC-MMS allocation.

Now consider the second case when for all items j ∈ G :
u(j) < µ. Denote the value of µ considered by Algorithm
1 for which Exists-GC-MMS returns flag = true by µ∗.
From Theorem 3.2, the corresponding allocationA returned
by Exists-GC-MMS has all bundles of value at least (1 −
ε̄)µ∗.

If Exists-GC-MMS returns flag = true for the first value
of µ considered, then as this value is the upper bound on
µ, we have GC-MMS ≤ µ∗. Hence (1 − ε̄)µ∗ ≥ (1 −
ε̄)GC-MMS ≥ (1 − ε′)GC-MMS, where the last inequality
follows as ε̄ = ε′/2.

Otherwise, for the value of µ considered in the previous
iteration before µ∗, that is, for µ∗/(1− ε̄), Exists-GC-MMS
returned flag = false. Hence GC-MMS < µ∗/(1 − ε̄).
Hence, the smallest valued bundle in A has value at least
(1− ε̄)µ∗ ≥ (1− ε̄)2GC-MMS ≥ (1− ε′)GC-MMS.

Thus, in both cases, A is a (1− ε′)GC-MMS allocation.

Lemma 3.3. Given a GC-MMS instance
〈N ,G, (Sj)j∈[m−], u〉, if µ ≤ GC-MMS then there is
a valid partition of T where the sum of values in each part
is at least 9E2.

Proof. Since µ ≤ GC-MMS, there is a valid allocation for
〈N ,G, (Sj)j∈[m−], u〉 where all bundles have value at least
µ. If we scale the value of each item by 9E2/µ, the value
of all bundles will also be scaled by 9E2/µ because v is
additive. Hence we get a valid partition where all parts have
a total sum of at least 9E2.

Lemma 3.4. A valid partition of T where the sum of values
in each part is at least 9(E2 − E) is equivalent to a valid
allocation for its corresponding GC-MMS instance where
each bundle has value at least (1− ε̄)µ.

Proof. Let P = (P1, . . . , Pn) be the valid partition and let
A = (A1, . . . , An) be its corresponding valid allocation. We
have

∑
p∈Pi

p = (9E2/µ)u(Ai). Hence,∑
p∈Pi

p ≥ 9(E2 − E) ∀i ∈ [n]

(
9E2

µ

)
u(Ai) ≥ 9(E2 − E) ∀i ∈ [n]

=⇒ u(Ai) ≥ µ
(

9E2 − 9E

9E2

)
∀i ∈ [n]

=⇒ u(Ai) ≥ µ(1− 1

E
) ∀i ∈ [n]

=⇒ u(Ai) ≥ (1− ε̄)µ ∀i ∈ [n].

The last inequality holds because E = d 1
ε̄ e ≥

1
ε̄ .

B Algorithm for B-MMS when MMS < 0

In this section, we will give an overview of the algorithm for
the B-MMS problem when MMS < 0. That is, v+ is less
than v−, and |MMS| ≥ v+/ρ, for some constant ρ ≥ 1.
To obtain this result, we reduce the B-MMS problem to the
CC-MMS problem, defined shortly. We prove that a PTAS
for the CC-MMS problem implies a PTAS for the B-MMS
problem. To complete the result, in the major part of this
Section, we show a PTAS for the CC-MMS problem.

B.1 Technical Overview
In the entire discussion, we will consider the value of each
chore as its absolute value, intuitively representing the cost
of doing the chore.

The outline of the algorithm is the same as the counter
case when MMS ≥ 0. To avoid repetition, we will focus
on highlighting the main ideas that differ from the approach
used in Section 3. We first reduce B-MMS to a problem with
only chores, denoted by CC-MMS.We substitute every good
of B-MMS by a set of (n− 1) chores in CC-MMS, and call
them chore-copies of the good. An optimal allocation here
has the lowest value for the largest bundle (call this value
CC-MMS). We find via a search algorithm, that runs a sub-
routine Exists-CC-MMS in each iteration, the lowest value
µ for which there exists an allocation that gives every agent
at most a µ valued bundle.

Exists-CC-MMS (Algorithm 4), scales the values of items
by 9E2/µ and calls the set of all scaled valuations (of chores
and chore-copies) T . We prove in Lemma B.5 that a valid
partition of T (defined in Definition B.6), defined as one
where the sum of values in each part is at most 9E2 + 9E,
implies a µ/(1 − ε̄) valued valid allocation for the corre-
sponding CC-MMS instance. Then, Exists-CC-MMS classi-
fies the set of values in T as BIG(T) or SMALL(T), solves
an IP to find a suitable allocation of values in BIG(T), and
allocates the SMALL(T) values greedily upon the allocation
of BIG(T).

We then define types of subsets of BIG(T) with a vec-
tor τ = [τ̄ , τ]. However, when MMS < 0, we consider the
closest integer to the values when they are rounded up. The
variables of the IP designed for Exists-CC-MMS correspond
to all type vectors τ that represent all bundles of BIG(T)
with total value at most 9E2 + 9E, and those that contain at
most one chore-copy of every BIG good.

The IP has constraints to select n types that ensure the
selection at least covers all given chores and chore-copies.
We now define two surplus functions. The first, denoted
by c(τ(X)), represents the cost that can be added to ev-
ery bundle X from SMALL(T) while keeping the bundle’s
value at most 9E2 + 6E. This highest allowed value is 3E
lower than our desired bound of 9E2 + 9E. This is because
we cannot form bundles of SMALL(T) values of arbitrary
precision. At a high level, if the IP finds a solution where
all the SMALL(T) values can be filled while keeping ev-
ery bundle’s total cost at most 9E2 + 6E, then as every
SMALL(T) value is at most 3E, we can greedily allocate
all these without any bundle’s cost exceeding 9E2 + 9E.
Formally, if Size(τ(X)) is the cost of a bundle from the
BIG(T) values, we define c(τ(X)) for Exists-CC-MMS as
max{0, 9E2 + 6E − Size(τ(X))}. Next, σ−(τ(X)) :=
min{c(τ(X)), σ−}. σ− is the sum of the values of one
chore-copy of every good. Thus, σ−(τ(X)) is the maximum
surplus in X for adding SMALL chores, whose values are in
the set SMALL(Vg).

With two constraints using these functions, the IP ensures
that we can allocate all the SMALL items. Using the notation
from the MMS ≥ 0 case, the IP for Exists-CC-MMS is as
follows.

Γ∑
j=1

xj = n; xj ∈ {0} ∪ N,∀j ∈ [Γ] (6)

Γ∑
j=1

τ (j)
r xj ≥ (n− 1)n+

r , ∀r ∈ [3E, 9E2] (7)

Γ∑
j=1

τ (j)
r xj ≥ n−r , ∀r ∈ [3E, 9E2] (8)

Γ∑
j=1

c(τ (j))xj ≥ σ;

Γ∑
j=1

σ−(τ (j))xj ≥ σ− (9)

We prove that Exists-CC-MMS solves this IP and returns an
allocation which gives every agent a bundle of value at most
9E2 + 9E, if µ ≥ CC-MMS.

The detailed algorithm for CC-MMS and its analysis are
described in the next section.

B.2 Detailed discussion
Since we consider the negated value of chores, i.e., their
cost, all chores have a non-negative cost. All associated val-
ues MMS, CC-MMS are also non-negative. Two small but
key implications of this are (a) because of this negation, the
MMS value is at least the average sum of all values (b) the
sum of values of all items of the B-MMS instance is v−−v+.

We now introduce all notation for the CC-MMS problem
and its formal definition.
Definition B.1 (CC-MMS instance). A tuple
〈N , C, (Sj)j∈[m+], u〉, where N is a set of agents, M
is a set of chores, (Sj)j∈[m+] are m+ sets of chores,
each containing (n − 1) identical copies of a good, and
u : C ∪ (Sj)j∈[m+] → R+ is the identical additive valuation
function of the agents in N for all items C ∪ (Sj)j∈[m+].
Definition B.2 (Valid allocation). Given a CC-MMS in-
stance 〈N , C, (Sj)j∈[m+], u〉, an allocation A is valid if
no agent receives more than 1 item from any set Sj ∈
(Sj)j∈[m+], i.e., for all i ∈ N , j ∈ [m+], |Ai ∩ Sj | ≤ 1.

Definition B.3 (CC-MMS value). Given a CC-MMS in-
stance 〈N , C, (Sj)j∈[m+], u〉, let F be the set of all valid
allocations. The CC-MMS value of the instance, denoted by
CC-MMS, is defined as follows.

CC-MMS = argmin
A∈F

max
A∈A

u(A).

Finding allocations that give every agent a bundle worth at
most her CC-MMS value is NP-Hard, as the MMS problem
in a chore manna is a special case of this problem where
(Sj)j∈[m+] = ∅. Hence, we define approximate CC-MMS
allocations as follows.
Definition B.4 ((1 − ε′)CC-MMS allocation). Given a
CC-MMS instance 〈N , C, (Sj)j∈[m+], u〉, a valid allocation
A is called a (1− ε′)CC-MMS allocation if

u(A) ≤ CC-MMS/(1− ε′) ∀A ∈ A.
Definition B.5 (CC-MMS problem). Given a CC-MMS in-
stance 〈N , C, (Sj)j∈[m+], u〉 and ε′ > 0, return a valid al-
location A such that maxA∈A u(A) ≤ CC-MMS/(1− ε′).

In Section B.3, we show how to reduce the B-MMS prob-
lem to a CC-MMS problem, and why a PTAS for CC-MMS
implies a PTAS for B-MMS.

B.3 Reducing B-MMS to CC-MMS

Given an instance 〈N ,M, v〉 we define the corresponding
CC-MMS instance 〈N , C, (Sj)j∈[m+], u〉 as follows. First,
C = M−. Moreover, for all j ∈ M+, define Sj to be a
set of (n − 1) chores, each represented by tuples as Sj :=
{(j, k)| k ∈ [n− 1]}. Let (Sj)j∈[m+] :=

⋃
j∈[m+] Sj where

m+ = |M+|. Finally, define u(j) = |v(j)| for all j ∈ M−
and u((j, k)) = v(j) for all j ∈ M+ and k ∈ [n − 1]. Let
the chores in Sj be called chore-copies of good j.

Lemma B.1. Allocations of B-MMS are in one-to-one cor-
respondence with valid allocations of CC-MMS, such that if
allocation Bπ of B-MMS corresponds to allocation Cπ of
CC-MMS, then u(Ci) = v(Bi) + v+, ∀i ∈ N .

Proof. Given a B-MMS allocation Bπ , add chore-copies of
each good to agents who did not receive the good inBπ , and
discard all goods. This gives a valid CC-MMS allocation.
The reverse allocation is obtained by similarly discarding all
chore-copies and assigning the corresponding good to the
agent who did not receive any chore-copy.

Every agent i ∈ N receives in Cπ all the chores as-
signed to her in Bπ . Every good that was assigned to her
in Bπ is discarded in Cπ . Due to this, the cost of her bundle
(negated value) increases by the value of goods allotted to
her in Bπ. Further, for every good not assigned to her, she
receives a chore-copy of it inCπ. Each chore-copy increases
her cost by the value of the corresponding good. Hence, her
cost increases by the value of all goods not assigned to her
as well. Her bundle’s total negated value in Cπ is exactly,∑
j∈M+∩Bi

v(j) +
∑
j∈M+\Bi

v(j) = v+ more than in
Bπ.

Corollary B.1. CC-MMS, relates to the MMS value of the
B-MMS problem as,

CC-MMS = MMS + v+. (10)

Lemma B.1 implies the following lemma.
Lemma B.2. If MMS ≥ v+/ρ, a (1 − ε′)CC-MMS allo-
cation implies a (1− ε)-MMS allocation, for ε = ε′(1 +
ρ)/(1 + ρε′). Thus, an algorithm for the CC-MMS problem
implies one for the B-MMS problem.

Proof. We take the (1 − ε′)CC-MMS allocation, say Cπ,
and consider the B-MMS allocation Bπ corresponding to it,
according to the one-to-one correspondence described in the
proof of Lemma B.1. From Equation (10), the largest bundle
in Bπ has value at most CC-MMS/(1− ε′)− v+.

If MMS ≥ v+/ρ, we have, CC-MMS/(1 − ε′) − v+ =
(MMS+ v+)/(1− ε′)− v+ = MMS/(1− ε′) + v+(ε′/(1−
ε′)) ≤ MMS/(1− ε′) + (ε′/(1− ε′)ρMMS = (1 + ρε′)(1−
ε′)MMS. To have this value at most MMS/(1− ε), we solve
(1+ρε′)(1−ε′) = 1/(1−ε), and get ε = ε′(1+ρ)/(1+ρε′).
As ρ is a constant in the B-MMS problem, ε also is.

Given an algorithm for the CC-MMS problem, we find a
(1−ε′)CC-MMS allocation for ε′ = ε/(1+(1−ε)ρ), . From
the above relation, this is a (1− ε)-MMS allocation solving
B-MMS.

Lemma B.2 shows that solving CC-MMS is sufficient
to solve B-MMS when v− > v+ (the other case is ex-
plained in Section 3). Algorithm 3 outlines the PTAS for
CC-MMS. As described in Section B.1, the algorithm for
CC-MMS will perform a search over a range of possi-
ble values of CC-MMS. We now define this range. First,
we know MMS ≥ v+/ρ. We also have the follow-
ing two trivial lower bounds on MMS. First, MMS ≥
(v− − v+)/n. Also, the MMS value is at least the value

of the chore with the largest absolute value. This is be-
cause in any allocation, the largest chore, of value say v,
has to be added to some bundle. This bundle has value
at least v. Hence the value of the highest valued bun-
dle, that is the MMS value, is at least v. Thus, MMS ≥
maxj∈M− v(j). Hence, the lower bound on the MMS value
is max{v+/ρ, (v−− v+)/n,maxj∈M− v(j)}. A trivial up-
per bound on the MMS value is the sum of all items,
(v− − v+). From Lemma B.1, the corresponding bounds
for CC-MMS are CC-MMS ≥ v+ + max{v+/ρ, (v− −
v+)/n,maxj∈M− v(j)}, and CC-MMS ≤ (v−−v+)+v+.

Note that we want an allocation with the smallest cost of
the largest bundle. Hence, the best value for MMS is the
lower bound.

Each iteration of the search in Algorithm 3 takes a candi-
date value µ in above range, and works as follows. Note that
as we consider values greater than maxj vj in the search,
every item has value at most µ in every iteration. The algo-
rithm calls a subroutine Exists-GC-MMS, which checks if
there is a valid allocation where all bundles have value at
most µ/(1 − ε̄) for ε̄ = ε′/2. If such an allocation exists
the algorithm returns it and if it does not exist it correctly
reports µ < CC-MMS. We will discuss the Exists-CC-MMS
algorithm in Section B.4 and prove the following theorem.

Theorem B.1. Exists-CC-MMS(〈N , C, (Sj)j∈[m+], u〉, ε, µ)
returns a tuple (A, f lag), where A is a (1 − ε′)CC-MMS
allocation and flag = true when µ ≥ CC-MMS, and runs
in O(mn) time.

Algorithm 3: Algorithm for CC-MMS

Input : 〈N , C, (Sj)j∈[m+], u〉, ε′ > 0
Output: (1− ε′)CC-MMS allocation if

CC-MMS ≥ (1 + 1/ρ)v+

1 ε̄← ε′/2,
µ← max{v+/ρ,maxj v(j), (v− − v+)/n}

2 while µ ≤ v− do
3 (A, f lag)←

Exists-CC-MMS(〈N , C, (Sj)j∈[m+], u〉, ε̄, µ)
4 if flag then
5 return A
6 else
7 µ← µ/(1− ε̄)

8 A = (A1, . . . , An) where Ai = {(j, i) : ∀j ∈ [m+]}
for i ∈ [n− 1], An = C // agents 1 to n− 1
each get one chore-copy of all
goods.

9 return A

Exists-CC-MMS, together with Algorithm 3, is a PTAS
for CC-MMS. We search in the range defined above and re-
turn a trivial allocation if the value is not found.

Finally, Theorem B.1 and Lemma B.2 are used to show
that Algorithm 3 gives an efficient algorithm for the B-MMS
problem.

Lemma B.3. For any CC-MMS instance, Algorithm 3 re-
turns (1− ε′)CC-MMS allocation.

Proof. While running Algorithm 3, let µ∗ be the µ for
which Exists-CC-MMS returns flag = true. From The-
orem B.1, the corresponding allocation A returned by
Exists-CC-MMS has all bundles of value at most µ∗/(1− ε̄).
If Exists-CC-MMS returns flag = true for the first value
of µ considered, then as the first value is the lower bound
on µ, we have CC-MMS ≥ µ∗, hence µ∗/(1 − ε̄) ≤
CC-MMS/(1 − ε̄) ≤ CC-MMS/(1 − ε′), where the last in-
equality follows as ε̄ = ε′/2.

Otherwise, for the value of µ considered in the previous
iteration before µ∗, that is, for µ∗(1 − ε̄), Exists-CC-MMS
returned flag = false. Hence CC-MMS > µ∗(1 − ε̄).
Hence, the largest valued bundle in A has value at least
µ∗/(1− ε̄) ≤ CC-MMS/(1− ε̄)2 ≤ CC-MMS/(1− ε′).

Therefore, in both cases, A is a (1− ε′)GC-MMS alloca-
tion.

Lemmas B.2 and B.3, together with Theorem B.1, prove
the second half of Theorem 1.1, specified as follows.

Theorem B.2. There is an algorithm for the B-MMS prob-
lem for the case MMS < 0 (before negating valuations) that
runs in time O(mnL), where L is the bit-length of the input.

It now remains to discuss the Algorithm Exists-CC-MMS
and prove Theorem B.1. The next section discusses this.

B.4 Algorithm for Exists-CC-MMS

In this section, we describe the algorithm Exists-CC-MMS,
which given a CC-MMS instance, a value µ, and a con-
stant ε̄ > 0, either outputs a valid allocation where all
bundles have value at least µ/(1 − ε̄) or correctly reports
µ < CC-MMS.

The Algorithm has two steps 1) Pre-processing and 2)
Main Algorithm.

Pre-processing.(Algorithm 4, line 1) Let E := b 1
ε̄ c. Note

thatE is a constant integer that only depends on ε̄ and not on
parameters in the CC-MMS instance. Scale the valuations v
by 9E2/µ.

Let Vc and Vg be multi-sets of numbers corresponding to
scaled valuations, respectively of all the chores in C, and all
the chore-copies in (Sj)j∈[m+]. Formally, we define Vc,Vg
and sets Gj for j ∈ [m+] as follows.

cj := u(j).

(
9E2

µ

)
, j ∈ C,

gkj := u(j, k).

(
9E2

µ

)
,∀(j, k) ∈ Sj ,∀Sj ∈ (Sj)j∈[m+]

Gj := {g1
j , . . . , g

n−1
j }, j ∈M+

Vc := {c1, . . . cm−}, Vg :=
⋃

j∈[m+]

Gj .

Finally, let T = Vg ∪ Vc.

This completes the pre-processing step. The following
lemmas characterize partitions of T that correspond to ap-
proximately optimal CC-MMS allocations.
Definition B.6 (Valid Partition of T). We call a partition
P = (P1, . . . , Pn) of values in T valid if each Pk contains
at most one element from each Gj , i.e., |Pk ∩ Gj | ≤ 1 for
all k ∈ [n] and j ∈ [m+].

It is easy to see that each valid partition of T is equivalent
to a valid allocation in its corresponding CC-MMS instance.
The next lemma is a direct implication of this observation.
Lemma B.4. Given a CC-MMS instance
〈N , C, (Sj)j∈[m+], u〉, if µ ≥ CC-MMS then there is
a valid partition of T where the sum of values in each part
is at most 9E2.

Proof. Since µ ≥ CC-MMS, there is a valid allocation for
〈N , C, (Sj)j∈[m+], u〉 where all bundles have value at most
µ. If we scale the value of each item by 9E2/µ, the value
of all bundles will also be scaled by 9E2/µ because v is
additive. Hence we get a valid partition where all parts have
a total sum of at most 9E2.

Lemma B.5. Finding a valid partition of T where the sum
of values in each part is at most 9(E2 + E) is equivalent
to finding a valid allocation for its corresponding CC-MMS
instance where each bundle has value at most µ/(1− ε̄).

Proof. Let P = (P1, . . . , Pn) be the valid partition and let
A = (A1, . . . , An) be its corresponding valid allocation. We
have

∑
p∈Pi

p = (9E2/µ)u(Ai). We have∑
p∈Pi

p ≤ 9(E2 + E) ∀i ∈ [n]

(
9E2

µ

)
u(Ai) ≤ 9(E2 + E) ∀i ∈ [n]

=⇒ u(Ai) ≤ µ
(

9E2 + 9E

9E2

)
∀i ∈ [n]

=⇒ u(Ai) ≤ µ(1 +
1

E
) ∀i ∈ [n]

=⇒ u(Ai) ≤ (1 + ε̄)µ ∀i ∈ [n].

=⇒ u(Ai) ≤ µ/(1− ε̄) ∀i ∈ [n].

The second-last inequality holds because E = b 1
ε̄ c ≤

1
ε̄ .

Main Algorithm. This step obtains a valid partition of T
where the sum of values in each part is at most 9(E2 + E),
if µ ≥ CC-MMS, else correctly reports this by returning
flag = false. Note that after scaling by 9E2, we can as-
sume t ≤ 9E2 ∀t ∈ T .

The key of the algorithm is an IP to allocate the BIG items.
We first explain the IP.

Notation. We define SMALL and BIG values in T . Call
a value t ∈ T SMALL if t < 3E and BIG if t ≥ 3E.
For each T ⊆ T let SMALL(T) be the set of all small
values in T and BIG(T) be the set of all big values in T .

We abuse notation and call a set Gj ∈ Vg small if it con-
tains SMALL values and big otherwise2. Let σ be the sum
of all values t in SMALL(T), i.e., σ :=

∑
t∈SMALL(T) t.

Let σ− :=
∑
t∈SMALL(Vc) t be the total sum of all values

t in SMALL(Vc), and σ+ := (
∑
t∈SMALL(Vg) t)/(n− 1) be

1/(n− 1) of the sum of SMALL values in Vg . Note that σ+

is equal to the sum of values obtained by picking one value
from each small Gj , and σ = σ− + (n− 1)σ+.

Next, we know that every BIG value will be in the range
[3E, 9E2]. Consider all integers r in [3E, 9E2]. Let n−r be
the number of values in BIG(Vc) with dgje = r and let n+

r

be the number of big Gj sets which have dgkj e = r for all
k ∈ [n−1]. Thus, there are (n−1)n+

r +n−r items in Vg∪Vc
with values whose integral part is r.

We now define the notation to represent a subset of BIG
values and their sum. Let X denote a part in a partition of
T . We define the type of X by τ(X) = 〈τ(X), τ(X)〉 =
(τ3E , τ3E+1, . . . , τ9E2 , τ3E , τ3E+1, . . . , τ9E2); here τ r is
the number of values in BIG(X∩Vc) with integer part r and
τ r is the number of values in BIG(X ∩Vg) with integer part
r. Let SIZE(τ(X)) :=

∑9E2

r=3E r(τ r + τ r) be the total sum
of these rounded values in BIG(T ∩X).

Using this notation, we design an IP to find an assignment
of BIG values in a (1 − ε̄)CC-MMS partition. That is, a se-
lection of n types that allocate all BIG values such that, there
is a valid way to add SMALL values and obtain an allocation
where each part has value at most 9(E2 +E). Thus, we will
only consider types whose size SIZE(.) is at most 9E2 +9E.

The variables of the IP correspond to all types that sat-
isfy (i) SIZE(τ (j)) ≤ 9E2 + 9E, (ii) τ (j)

r ≤ n−r , (iii)
τ

(j)
r ≤ n+

r . That is, every type represents a subset of BIG
values that have at most n−r values from Vg and n+

r values
from Vc with integral part of value r. Let us call the items
of CC-MMS corresponding to the BIG (resp. SMALL) val-
ues as BIG (resp. SMALL) items. Intuitively, we allow types
that represent valid allocations of BIG items of the CC-MMS
instance. In the solution, every IP variable takes an integer
value equal to the number of times the corresponding type
is selected. This in turn represents the number of parts in the
output allocation that have a subset of BIG items as repre-
sented by this type.
Lemma B.6. The IP has O(1) number of variables.

Proof. Every type with size at most 9E2 + 9E can have at
most 3E + 3 BIG values, as every BIG value is at least 3E.
Each value is one of [3E, 9E2], a constant sized set. Hence,
the number of types are at most (9E2−3E+1)(3E+3),which
is a constant as E is a constant. The number of variables
of the IP is at most the number of types with size at most
9E2 + 9E, hence is constant.

Before defining the IP, we define two cost functions for
every type. The intuition for this function is described in the

2Note that each Gj , j ∈ [m+] contains (n − 1) equal values.
i.e, for each Gj , either SMALL(Gj) = ∅ or SMALL(Gj) = Gj .

technical overview (Section B.1). These are used to define
constraints to allocate SMALL items.

Define c(τ(X)) := {0, 9E2 + 6E − SIZE(τ(X))}, and
σ−(τ(X)) := min{c(τ(X)), σ−}.

Using the above notation, the IP is as defined in Section
B.1.

Algorithm 4: Exists-CC-MMS

Input : 〈N , C, (Sj)j∈[m+], u〉, ε̄, µ
Output: (A,True) if there exists a (1− ε̄)-CC-MMS

allocation A and (∅,False) otherwise

1 Vg ←
⋃
j∈[m−]Gj , Gj := {g1

j , . . . , g
n−1
j };

gkj = u(j, k),∀(j, k) ∈ Sj ,∀Sj ∈ (Sj)j∈[m−];

Vc ← {c1, . . . cm+}, cj = u(j).
(

9E2

µ

)
, j ∈ G ;

T ← Vg ∪ Vc
2 P = {P1, · · · , Pn} ← (∅, · · · , ∅)
3 if IP has a solution X for T then
4 j ← 1
5 for all i : xi 6= 0 : do
6 Add BIG values to each Pk, k ∈ [j, j + xi] as

per τ (i) ; j ← j + xi + 1

7 while there is i : σ−(τ i) > 0 and some
unallocated value from Vg do

8 while ∃j : Gj ∩ Pi 6= ∅ and σ−(τ i) > 0 do
9 assign one value from Gj to Pi

10 σ−(τ i)← σ−(τ i)− u(j)

11 while ∃j : Gj ∩ Pi = ∅ do
12 assign one value from Gj to each part in

N\{i}

13 while there is an unallocated j ∈ Vc do
14 for any i : c(τ i) > 0 : Pi ← Pi ∪ {j}
15 c(τ i)← max{c(τ i)− u(j), 0}
16 A← Allocation of items corresponding to P

return (A,True)

17 return (∅,False)

The Exists-CC-MMS algorithm is as follows. After apply-
ing the pre-processing step, it defines and solves the IP from
Section B.1. If the IP has a solution, then first it considers
the items from the CC-MMS instance that correspond to the
BIG values in T . The algorithm partitions these items in n
bundles by creating xi bundles corresponding to type τ (i).
After this, it considers the bundles of BIG items that do not
have total sum of values at most 9E2 +9E. To each of these,
it first adds the SMALL items corresponding to the small Gj
subsets, by adding at most one item from each subset Gj , in
any order. After all items from all sets Gj are allocated, it
considers the parts whose sum is still less than 9E2 + 9E.
It adds items corresponding to SMALL(Vc) to any of these,
until all items are exhausted. The algorithm returns the tuple
A, f lag, where A is the allocation formed by this process,
and flag = true.

If the IP does not have a solution, it returns the tuple
(∅, f lag = false).

Algorithm 4 formally describes Exists-CC-MMS.We now
analyze the correctness of Exists-CC-MMS, and the run time
of Algorithm 3.
Lemma B.7. If µ ≥ CC-MMS, then the IP has a solution.

Proof. Lemma B.4 shows that there is a partition of T where
all bundles have value at most 9E2, as µ ≥ CC-MMS.
Let T ∗ = (T ∗1 , · · · , T ∗n) be this partition. Let τ∗ =
[τ1, τ2 · · · , τn] = [τ(T ∗i)](i∈[n]) be the multi-set of types
of each part in T ∗.

For τ∗, constraints (6), (7), and (8) hold by definition of a
valid partition. For any τ i ∈ τ∗ we have,∑

t∈SMALL(T∗i)

t ≤ 9E2 −
∑

t∈BIG(T∗i)

t

≤ 9E2 + 3E − SIZE(τ i)

≤ c(τ i).
The second inequality holds because the SIZE function
rounds up all values, and there are at most 3E BIG values
in each T ∗i . By adding the above inequality for all τ i ∈ τ∗,
we obtain (9) of the IP.

Since each T ∗i is a subset of a valid part, its corresponding
type τ i has at most one value from each Cj . Therefore, for
any τ i ∈ τ∗ we have,∑

t∈SMALL(τ i∩Vg)

t ≤ c(τ i)−
∑

t∈SMALL(τ i∩Vc)

t

≤ c(τ i)− σ− ≤ σ+(τ i).

By adding the above inequality for all T ∗i ∈ T ∗ we obtain
the constraint (9) for IP. Thus, T ∗ is a solution of the IP.

Lemma B.8. If the IP has a solution, then the allocation
returned by Exists-CC-MMS after finding this solution is a
valid allocation of CC-MMS where all bundles have value
at most 9E2 + 9E.

Proof. Let τsol be the solution of the IP,P sol be the partition
of the BIG values corresponding to these types, and A be
the allocation returned by Algorithm Exists-GC-MMS after
finding τsol.

The algorithm adds SMALL items by first adding chore-
copies. Initially, when all chore-copies are unallocated, as
τsol satisfies constraint (b) of (9) of the IP, the total cost
σ−(τ(.)) for SMALL(Vg) for all bundles is at least σ−.
Hence, there is at least one agent with cost σ− more than
0. The algorithm assigns as items from different sets Gj to
this agent, until her cost σ−(τ i) becomes zero. At this point,
either i has exhausted one chore-copy of every good, or her
cost c(τ i) = 0. If the former is true, we have a smaller
problem with (n − 2) copies of every good remaining, and
n agents, hence by inductive reasoning, the algorithm as-
signs all chore-copies. If c(τ i) = 0, then first we assign one
chore-copy of each good j that i did not get, to every re-
maining agent, to obtain a valid partition. Note that the sum

of costs σ−(τk) for the remaining agentsN\{i}, is equal to
the space in each bundle for adding at most one copy of ev-
ery chore, hence at least j, is more than the total cost of the
unallocated items, including j, in Vg, hence we can do this.
The cost σ−τ for all bundles now is

∑
k∈N ,k 6=i σ

−τk =∑
k∈N σ

−τk − σ−τ i − (n− 1)
∑
j:Gj∩Ai=∅ u(j) ≥ σ− −

σ−τ i− (n− 1)
∑
j:Gj∩Ai=∅ u(j), which is exactly the cost

of unallocated chore-copies. Hence, again by induction, we
can repeat the process.

Finally, as constraint (9) is satisfied, until there is some
unallocated chore, there will be some bundle Ai with
c(τ(Ai)) > 0. Line 8 and 14 can add one SMALL chore
to Ai. Hence, all SMALL chores can be allocated.

Lemma B.9. Exists-CC-MMS runs in time O(mn).

Proof. The time to run Exists-CC-MMS is asymptotically
equal to the time for constructing and solving the IP.
Lenstra’s algorithm (Lenstra Jr 1983) takes time exponen-
tial in the number of variables, O(21/ε̄2) = O(21/ε) here,
and polynomial in the largest coefficient of any variable in
all inequalities, m−+ (n− 1)m+ = O(mn) here. Hence, it
requires O(21/εmn) = O(mn) time to solve the IP.

